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Computational Considerations
To simulate the branching processes, we used Gillespie’s algorithm. Namely, given the current population state

, the time to the next demographic event is exponentially distributed with rate parameter(N (t), … , N (t)) r(t) p1 n

. When the demographic event occurs, the probabilities that this event is a
n� (b � d )N (t) � m� m N (t)i i i ij iip1 i(j

birth in patch i, a death in patch i, or a dispersal event from patch i to patch j are given by ,b N (t)/r(t)i i

, and , respectively.d N (t)/r(t) mm N (t)/r(t)i i ij i

Extinction probabilities were computed using the generating function for the branching process (Harris [1963]
2002; Athreya and Ney [1972] 2004). The generating function is a multivariate function—G(s) p

, where —that captures all the probabilistic information about changes in the(G (s), … , G (s)) s p (s , … , s )1 n 1 k

population state. For our spatial branching process, this generating function is given by

n1 2G (s) p d � b s � m m s ,�i i i i ij j( )b � d � me jp1i i i

where the coefficients of 1, , and correspond to the probabilities that a demographic event of an individual in2s si j

patch i corresponds to dying, giving birth, and dispersing to patch j.
The probability of extinction depends on the initial abundance and distribution of individuals on the landscape.

Let denote the extinction probability if there is initially one individual arriving in patch i. If , then theq l 1 0i

extinction probabilities are given by the unique solution to satisfying forq p (q , … , q ) G(q) p q 0 ≤ q ! 11 n i

all i. From these extinction probabilities, it is possible to compute the probability of extinction (and the
complementary probability of invasion success) for any initial distribution and abundance of individuals. Namely,
if is the initial number of individuals in patch i, then the probability that the invasion fails is given byN (0)i

N (0)iq .� i
i

Numerically estimating the probabilities is straightforward: iterate the difference equationq s(t � 1) p G(s(t))i

with until it converges to q.s(0) p (0, … , 0)
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Asymptotic Population Growth Rate
The solution for any linear differential equation is given by where denotes thedN/dt p NA N(0) exp (At) exp (7)
matrix exponential. A and share the same eigenvectors. Moreover, the eigenvalues of are theexp (A) exp (A)
exponentiated eigenvalues of A. If, as in our case, A has nonnegative entries on the off diagonal, then the
exponentiated matrix is a nonnegative primitive matrix. By the Perron-Frobenius theorem, there exists aexp (A)
positive dominant eigenvalue. Call it and let be the corresponding dominant eigenvalue ofr(A) l(A) p ln r(A)
A. For the model presented in the main text, the expected asymptotic growth rate is given by

f (m) p l[B � D � m(M � E)].

To show that this asymptotic growth rate decreases with the mean dispersal rate, it will be shown that .′f (m) ! 0
Given any , choose such that , where I is the identity matrix. Definem p x 1 0 a 1 0 axI ≥ D � xE n # n

1
L p (B � D) � aI,

x

g(t) p l[L � t(M � E)].

Our choice of a and our assumption that M is irreducible imply that is a nonnegative irreducibleM � E � L

matrix. Moreover, since the row sums of are 0, the row sums of equal the diagonal entriesM � E M � E � L

of l. The following Lemma of Kirkland et al. (2006) applied to L � t(M � E) p (1 � t)L � t(M � E � L)
implies that .′g (1) ! 0

Lemma 1

Suppose that A is an irreducible nonnegative matrix, and let be the diagonal matrix of row sums of A. LetD LA

be a diagonal matrix such that . For , let . Then .′L ≥ D 0 ≤ t ≤ 1 h(t) p l[(1 � t)L � tA] h (1) ! 0A

Since

l[xL � tx(M � E)]
g(t) p

x

l[B � D � axI � tx(M � E)]
p

x

l[B � D � tx(M � E)]
p � a

x

f (xt)
p � a,

x

it follows that . Since was arbitrary, is a decreasing function of as claimed.′ ′g (1) p f (x) ! 0 x 1 0 f (m) m 1 0
To identify the asymptotic growth rate at high dispersal rates ( ), define , ,lim f (m) C p B � D F p M � Emr�

and
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g(e) p l(eC � F).

Let be the right eigenvector of F such that , with . For every , let be the dominantv Fv p 0 � v p 1 e ≥ 0 w(e)i

left eigenvector of such that (note that w is a row vector and is a column vector). It followseC � F w(e)v p 1 v
that

g(e) p w(e)(eC � F)v p ew(e)Cv.

Since , it follows thatw(e) p (1, … , 1) � O(e)

g(e) p e(b � d) # v � eO(e),

g(e) � g(0)′g (0) p lim
eer0

p lim (b � d) # v � O(e)
er0

p (b � d) # v.

It follows that

1
lim f (m) p lim g m( )mmr� mr�

g(e)
p lim

eer0

p v # (b � d),

as claimed.
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Extinction Probabilities
Define and . The backward Kolmogorov equations (see,x (t) p P(N(t) p 0FN(0) p e ) x(t) p (x (t), … , x (t))i i 1 n

e.g., chap. V of Athreya and Ney [1972] 2004) for the extinction probabilities are given by

dxi p (b � d � me )(G (x) � x )i i i i idt

n

2p d � b x � m m x � (b � d � me )x .�i i i ij j i i i i
jp1

Hence,

ndxi p (1 � x )(d � b x ) � m m x � e x . (C1)�i i i i ij j i i( )dt jp1

Let be the smallest equilibrium to the backward equations. Branching process theory∗ ∗ ∗ nx p (x , … , x ) � [0, 1]1 n

(see, e.g., chap. V of Athreya and Ney [1972] 2004) implies that equals the vector of extinction probabilities∗x
q. Moreover, is a stable equilibrium for the backward equations whose basin of attraction includes .∗ nx [0, 1)

To understand low dispersal rates, consider the limit of , in which case the dynamics of equation (C1)m p 0
decouple. Separating variables and using partial fractions, the solution for with can be found to bex x (0)i i

1 � exp [(b � d )t]i ix (t) p . (C2)i 1 � R exp [(b � d )t]i i i

In particular, the probability of extinction is given by

1∗lim x (t) p x p min 1, .i i { }Rtr� i

By continuity of these extinction probabilities with respect to m, these analytic expressions provide zeroth order
approximations to extinction probabilities when .m 1 0

To understand the case of high dispersal rates, let be a row vector such that and .
nv v(M � E) p 0 � v p 1iip1

Define and . Then
n

y p � v x p v # x e p 1/miiip1

ndxi
e p e(1 � x )(d � b x ) � m x � e x�i i i i ij j i idt jp1

, (C3)ndy{ p v (1 � x )(d � b x )� i i i iidt ip1

and the limit corresponds to the limit , in which case we obtain a singular perturbation problem withm r � e r 0
fast variable x and the slow variable y. In the limit with , we havee p 0
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0 p e m x � e x ,� ij j i i
j

dy
p v(1 � x )(d � b x ).� i i i idt i

The first set of equations requires that . Since has zero row sums, for some(M � E)x p 0 M � E x(t) p c(t)1
function and where 1 is a column vector of ones. Since , it follows

n n
c(t) y(t) p � v x (t) p c(t)� v p c(t)ii iip1 ip1

that . Hence, the limiting dynamics on the slow manifold are given byx(t) p y(t)1

dy
p v (1 � y)(d � b y) p (1 � y)(v # d � v # by). (C4)� i iidt i

The solution of this differential equation is given by

1 � exp [v # (b � d)t]
y(t) p . (C5)ˆ1 � R exp [v # (b � d)t]

Moreover, the smallest equilibrium solution in is given by for all i if .[0, 1] x p y p 1 v # d ≥ v # bi

Otherwise, it is given by

1
y p x p ,i R̂

as claimed in the main text.
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Mean Times to Extinction
Assume . Then the branching process becomes extinct with probability 1. As in appendix C, letl ! 0 x (t) pi

and . Let denote the time to extinction, given that .P(N(t) p 0FN(0) p e ) x(t) p (x (t), … , x (t)) Z N(0) p ei 1 n i i

In other words, . Then . A standard result in probabilityZ p inf {t ≥ 0FN(t) p 0} 1 � x (t) p P(Z 1 tFN(0) p e )i i i i

implies that

�

E(Z ) p 1 � x (s)ds.i � i

0

Let . Then andtz (t) p 1 � x (s)ds E(Z ) p lim z (t)∫0i i i tr� i

dzi p 1 � x . (D1)idt

Hence, the extinction times can be solved for by solving the system of differential equations given by equations
(C1) and (D1).

For the case of , equation (C2) implies thatm p 0

�

E(Z ) p 1 � x (t)dti � i

0

�

(1 � R ) exp [(b � d )t]i i ip dt� 1 � R exp [(b � d )t]i i i
0

1

R � 1 duip , with u p 1 � R exp [(b � d )t],� i i iR (b � d ) ui i i
1�Ri

ln (1 � R )ip � .
bi

Moreover, continuity of with respect to m implies that these mean extinction times are zeroth orderE(Z )i

approximations of when m is positive but sufficiently small.E(Z )i

To understand the case (i.e., high dispersal rates relative to growth rates), the singular perturbationm k 1
argument used in appendix C implies that in the limit , , where is given by equation (C5).m r � x (t) p y(t) y(t)i

Hence,
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�

ˆln (1 � R)
E(Z ) p 1 � y(t)dt p � .i � v # b

0
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Single versus Multiple Releases
Assume that . This appendix shows that k propagules of size 1 have a greater likelihood of invasion successk ≥ 2
than one propagule of size k. Let be the probability of invasion failure if a single invader appears in patch i.qi

For a single release, the probability of invasion failure is given by

n1k kE(q ) p q . (E1)�i in ip1

To model a multiple release, let be independent random variables that are uniformly distributed onX , … , X1 k

. One can interpret as the release location of the ith propagule. The probability of invasion failure of1, … , n Xi

the multiple release is given by

E(q … q ). (E2)X X1 k

For patch i, let

N p #{jFX p i}i j

be the number of releases in patch i. For nonnegative integers such that ,
k

a ≥ a … ≥ a � a p k1 2 n iip1

1 a a1 nE[q … q F(N , … , N ) p (a , … , a ) for a permutation j] p q … q .�X X 1 n j(1) j(n) j(1) j(n)1 k n! j

Since for and , Muirhead’s inequality implies that… …a � � a ≤ k 1 ≤ i ≤ n � 1 a � � a p k1 i 1 n

1 1a a k1 nq … q ≤ q� �j(1) j(n) j(1)n! n!j j

n(n � 1)! kp q� in! ip1

kp E(q ),i

where the inequality is strict whenever and for some , . Summing over all thea ! k q ( q 1 ≤ i j ≤ n1 i j

conditional expectations yields

kE(q ) ≥ E(q … q ),i X X1 k

where the inequality is strict whenever for some , .q ( q 1 ≤ i j ≤ ni j
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Sensitivity Analysis
To compute sensitivities of the extinction probabilities when the asymptotic growth rate is positive, recall that
these probabilities are given by the smallest solution to

2(b � d � me )q p d � b q � m m q . (F1)�i i i i i i i ik k
k

Implicitly differentiating equation (F1) with respect to yieldsbi

�q �q �qi i k2q � a p q � 2b q � m m ,�i i i i i ik
�b �b �bki i i

where . Implicitly differentiating equation (F1) with respect to with yieldsa p b � d � me b j ( ii i i i j

�q �q �qi i ka p 2b q � m m .�i i i ik
�b �b �bkj j j

Thus, in matrix notation, we obtain

�q �q �q
diag(q) � diag(a) p diag(q y q) � 2diag(b y q) � mM ,

�b �b �b

where is the derivative matrix whose ith–jth entry is , denotes a Hadamard product, and�q/�b �q /�b y diag(v)i j

denotes a diagonal matrix whose diagonal entries are given by the entries of the vector . Equivalently, we havev

�q
diag[q y (1 � q)] p [diag(2b y q � a) � mM] .

�b

Hence,

�q
�1p [diag(2b y q � a) � mM] diag[q y (1 � q)].

�b

Using the matrix of sensitivities, the elasticities can be computed as

�q
�1E p diag(q) diag(b),b

�b

where the ith–jth entry of is .E (�q /�b )(b /q )b i j j i

On the other hand, implicitly differentiating equation (F1) with respect to yieldsdi

�q �q �qi i kq � a p 1 � 2b q � m m ,�i i i i ik
�d �d �dki i i
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where . Implicitly differentiating equation (F1) with respect to with yieldsa p b � d � me d j ( ii i i i j

�q �q �qi i ka p 2b q � m m .�i i i ik
�d �d �dkj j j

Thus, in matrix notation, we obtain

�q �q �q
diag(q) � diag(a) p I � 2diag(b y q) � mM ,

�d �d �d

where is the derivative matrix whose ith–jth entry is . Equivalently, we have�q/�d �q /�di j

�q
diag(q � 1) p [diag(2b y q � a) � mM] .

�d

Hence,

�q
�1p [diag(2b y q � a) � mM] diag(q � 1).

�d

Using the matrix of sensitivities, the elasticities can be computed as

�q
�1E p diag(q) diag(d),d

�d

where the ith–jth entry of is .E (�q /�d )(d /q )d i j j i



1

� 2009 by The University of Chicago. All rights reserved. DOI: 10.1086/605405

Appendix G from S. J. Schreiber and J. O. Lloyd-Smith, “Invasion
Dynamics in Spatially Heterogeneous Environments”
(Am. Nat., vol. 174, no. 4, p. 490)

Correlations between Time Lags/Spatial Spread with PC1

Figure G1: Using the simulated data described in “Model and Methods,” a linear regression was performed on
the logarithm of mean time lag (i.e., time to reach 100 individuals; a) and the logarithm of mean rate of spatial
spread (i.e., average change in fraction of landscape covered per unit time; b) versus the principal component
PC1 of the standardized values. Positive values of PC1 correspond to populations arriving in patches withq � l

high extinction risk or landscapes supporting a low metapopulation growth rate l.
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